自然语言处理之AI深度学习视频教程 顶级实战课程
自然语言处理之AI深度学习顶级实战课程视频教程下载。 本课程将首先介绍自然语言处理的发展现状与挑战,同时,讲解深度学习和自然语言处理的结合应用。除了基本算法外,本课程还配备实践环节,从一些典型的方向:机器翻译、文本分类、问答等。最后,将和大家讨论NLP的行业展望以及和各行各业的结合,比如医疗行业等。
自然语言处理之AI深度学习视频教程 顶级实战课程章节
章节1:NLP和深度学习发展概况和最新动态
课时1:NLP历史现在及为什么需要学习NLP技术
课时2:NLP实现机器学习,聊天机器人,情感分析和语义搜索
章节2:NLP与PYTHON编程
课时3:Python环境搭建及开发工具安装
课时4:NLP常用PYTHON开发包的介绍
课时5:Jieba安装、介绍及使用
课时6:Stanford NLP 在Python环境中安装、介绍及使用
课时7:Hanlp 在Python环境中安装、介绍及使用
章节3:快速掌握NLP技术之分词、词性标注和关键字提取
课时8:分词、词性标注及命名实体识别介绍及应用
课时9:准确分词之加载自定义字典分词01
课时10:准确分词之加载自定义字典分词02
课时11:准确分词之动态调整词频和字典
课时12:词性标注代码实现及信息提取
课时13:人名、地名、机构名等关键命名实体识别
课时14:TextRank算法原理介绍
课时15:基于TextRank关键词提取
章节4: 句法与文法
课时16:依存句法与语义依存分析
课时17:依存句法树解析(子树遍历,递归搜索,叶子节点提取等)
课时18:名词短语块挖掘
课时19:自定义语法与CFG
章节5: N-GRAM文本挖掘
课时20:N-GRAM算法介绍
课时21:N-GRAM生成词语对
课时22:TF-IDF算法介绍应用
课时23:基于TF-IDF挖掘符合语言规范的N-GRAM
章节6: 表示学习与关系嵌入
课时24:语言模型
课时25:词向量
课时26:深入理解Word2vec算法层次sofmax
课时27:深入理解Word2vec算法负采样
课时28:6.4 基于Word2vec技术的词向量、字向量训练
章节7: 深度学习之卷积神经网络
课时29:BP神经网络
课时30:彻底理解深度学习指卷积神经网络
课时31:CNN文本分类
课时32:CNN文本分类算法模块
课时33:CNN文本分类模型详解数据预处理
课时34:CNN文本分类模型测试与部署
章节8: 深度学习之递归神经网络
课时35:递归网络
课时36:LSTM
课时37:LSTM文本分类原理
课时38:LSTM文本分类代码架构
课时39:LSTM文本分类代码详解
课时40:LSTM文本分类模型预测与部署
章节9: 特定领域命名实体识别NER技术
课时41:基于深度学习医药保险命名实体识别课题背景介绍
课时42:医药保险命名实体和实体关系体系建立和命名实体分类规范
课时43:医药保险命名实体识别相关前沿技术和难点
课时44:基于深度学习医药保险命名实体识别的算法模块设计(上)
课时45:基于深度学习医药保险命名实体识别的算法模块设计(下)
课时46:数据的采集,清洗,数据机器自动标注及转化为深度学习格式(上)
课时47:数据的采集,清洗,数据机器自动标注及转化为深度学习格式(下)
课时48:模型本地Lib库封装(上)
课时49:模型本地Lib库封装(下)
课时50:部署tensorflow训练好的模型为云服务(上)
课时51:部署tensorflow训练好的模型为云服务(下)
课时52:算法设计及代码实现1
课时53:算法设计及代码实现2
课时54:代码调试,参数优化及深度剖析(深入理解)1
课时55:代码调试,参数优化及深度剖析(深入理解)2
1、自动:在上方保障服务中标有自动发货的商品,拍下后,将会自动收到来自卖家的商品获取(下载)链接;
2、手动:未标有自动发货的的商品,拍下后,卖家会收到邮件、短信提醒,也可通过QQ或订单中的电话联系对方。
1、描述:源码描述(含标题)与实际源码不一致的(例:描述PHP实际为ASP、描述的功能实际缺少、版本不符等);
2、演示:有演示站时,与实际源码小于95%一致的(但描述中有"不保证完全一样、有变化的可能性"类似显著声明的除外);
3、发货:手动发货源码,在卖家未发货前,已申请退款的;
4、服务:卖家不提供安装服务或需额外收费的(但描述中有显著声明的除外);
5、其他:如质量方面的硬性常规问题等。
注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。交易中的商品,卖家无法对描述进行修改!
1、在未拍下前,双方在QQ上所商定的内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准);
2、在商品同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外);
3、在没有"无任何正当退款依据"的前提下,写有"一旦售出,概不支持退款"等类似的声明,视为无效声明;
4、虽然交易产生纠纷的几率很小,但请尽量保留如聊天记录这样的重要信息,以防产生纠纷时便于网站工作人员介入快速处理。